WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+-Cl- cotransporter.

نویسندگان

  • Dagmara Lagnaz
  • Juan Pablo Arroyo
  • María Chávez-Canales
  • Norma Vázquez
  • Federica Rizzo
  • Alessia Spirlí
  • Anne Debonneville
  • Olivier Staub
  • Gerardo Gamba
چکیده

The serine/threonine kinase WNK3 and the ubiquitin-protein ligase NEDD4-2 are key regulators of the thiazide-sensitive Na+-Cl- cotransporter (NCC), WNK3 as an activator and NEDD2-4 as an inhibitor. Nedd4-2 was identified as an interacting partner of WNK3 through a glutathione-S-transferase pull-down assay using the N-terminal domain of WNK3, combined with LC-MS/MS analysis. This was validated by coimmunoprecipitation of WNK3 and NEDD4-2 expressed in HEK293 cells. Our data also revealed that the interaction between Nedd4-2 and WNK3 does not involve the PY-like motif found in WNK3. The level of WNK3 ubiquitylation did not change when NEDD4-2 was expressed in HEK293 cells. Moreover, in contrast to SGK1, WNK3 did not phosphorylate NEDD4-2 on S222 or S328. Coimmunoprecipitation assays showed that WNK3 does not regulate the interaction between NCC and NEDD4-2. Interestingly, in Xenopus laevis oocytes, WNK3 was able to recover the SGK1-resistant NEDD4-2 S222A/S328A-mediated inhibition of NCC and further activate NCC. Furthermore, elimination of the SPAK binding site in the kinase domain of WNK3 (WNK3-F242A, which lacks the capacity to bind the serine/threonine kinase SPAK) prevented the WNK3 NCC-activating effect, but not the Nedd4-2-inhibitory effect. Together, these results suggest that a novel role for WNK3 on NCC expression at the plasma membrane, an effect apparently independent of the SPAK kinase and the aldosterone-SGK1 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl- cotransporter.

Loss of physiological regulation of the renal thiazide-sensitive Na+-Cl- cotransporter (NCC) by mutant WNK1 or WNK4 results in pseudohypoaldosteronism type II (PHAII) characterized by arterial hypertension and hyperkalemia. WNK4 normally inhibits NCC, but this effect is lost by eliminating WNK4 catalytic activity or through PHAII-type mutations. In contrast, another member of the WNK family, WN...

متن کامل

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of r...

متن کامل

WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination.

A serine-threonine protein kinase, WNK4, reduces Na⁺ reabsorption and K⁺ secretion in the distal convoluted tubule by reducing trafficking of the thiazide-sensitive Na-Cl cotransporter to and enhancing renal outer medullary potassium channel retrieval from the apical membrane. Epithelial sodium channels (ENaC) in the distal nephron also play a role in regulating Na⁺ reabsorption and are also re...

متن کامل

WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway.

SLC12A cation/Cl- cotransporters are mutated in human disease, are targets of diuretics, and are collectively involved in the regulation of cell volume, neuronal excitability, and blood pressure. This gene family has two major branches with different physiological functions and inverse regulation: K-Cl cotransporters (KCC1-KCC4) mediate cellular Cl- efflux, are inhibited by phosphorylation, and...

متن کامل

WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability.

The regulation of Cl(-) transport into and out of cells plays a critical role in the maintenance of intracellular volume and the excitability of GABA responsive neurons. The molecular determinants of these seemingly diverse processes are related ion cotransporters: Cl(-) influx is mediated by the Na-K-2Cl cotransporter NKCC1 and Cl(-) efflux via K-Cl cotransporters, KCC1 or KCC2. A Cl(-)/volume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 307 3  شماره 

صفحات  -

تاریخ انتشار 2014